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ABSTRACT 

Wavelets permit multiresolution analysis of curves and surfaces. A complex curve can be 

decomposed using wavelet theory into lower resolution curves. The low-resolution (coarse) 

curves are similar to rough-cuts and high-resolution (fine) curves to finish-cuts in numerical 

controlled (NC) machining. 

In this project, we investigate the applicability of multiresolution analysis using B-spline 

wavelets to NC machining of contoured 2D objects. High-resolution curves are used close to 

the object boundary similar to conventional offsetting, while lower resolution curves, straight 

lines and circular arcs are used farther away from the object boundary. 

Experimental results indicate that wavelet-based multiresolution tool path planning improves 

machining efficiency. Tool path length is reduced, shaip comers are smoothed out thereby 

reducing uncut areas and larger tools can be selected for rough-cuts. 
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CHAPTER 1 INTRODUCTION 

Tool path planning is regarded as one of the keys to the integration of CAD and CAM, and 

vital for the survival of manufacturing industry (Greenwood, 1989; Bedworth ef a/., 1991). It 

is a fundamental task in NC machining. Planning is needed to execute both rough-cuts and 

finish cuts. In the rough-cut stage, the main goal is to remove material in the most efficient 

manner. In finish cutting, producing the desired surface finish and accuracy is the primary 

driving factor. Generation of the geometric profile of the tool path is the first stage. 

Interpolation methods are then applied to generate the NC code for machining. 

1.1 Tool Path Generation Methods 

Tool paths are the locus of cutter contact (CC) points, where the cutting tool makes contact 

with the design surface. The generation of tool paths has been a subject of a great deal of 

research in recent years. 

Approaches to tool path generation can be broadly grouped into the following two categories. 

* 2.5-dimensional (2.5D) machining. 2.5D machining is very important in the 

manufacturing of mechanical parts, moulds, and dies. 2.5D machining includes point-

to-point, pocketing and contouring operations. Point-to-point operations like drilling 

and tapping do not give rise to geometrical problem, and are easy to be implemented 

in recent NC machines. Pocketing (a pocket is a steep walled recess) aims to form a 
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depression in a workpiece by the removal of material within given boundaries. 

Contouring is planar cutting motion around a pre-defined part, which is similar to 

pocket machining an island without outer boundary walls. Tool path generation 

methods for pocketing and contouring include zzgzag mefAcwf and confowr-para/ZeZ 

mefAod, etc.. More detailed description about these methods will be presented later. 

* 3-dimensional (3D) machining. Complex 3D machined surfaces can be produced 

because of the accurate tooling provided by the CNC machine. The tool path 

generation methods found in the literature for various surface representations are 

summarized as below. 

AqpanzmgZrzc curve mefAod: This method is applicable only when the part surface is 

represented in the parametric form j": r(w,v) where % and v are the parameters of the 

surface J". When using a CAD/CAM system to develop isoparametric tool paths, the 

user is prompted for the direction of tool motion, tolerances for curve approximations, 

and the tool step-over that specifies the distance between subsequent machining 

curves. The CAD/CAM system then proceeds to compute the required points that are 

either offset directly or projected onto the offset surface. The advantage of this 

method is the ease of calculating isoparametric curves on & However, The spacing 

between isoparametric lines, in general, will be non-uniform causing over machining 

or under machining. Bobrow (1985) proposes a method for computing the CL (cutter 

location) file directly from the isoparametric curves. Elber and Cohen (1994) have 

provided a three-axis adaptive isocurve ball-end mill machining algorithm that 
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reportedly is gouge-free and eliminates the redundancy of the adjacent curves that are 

too close to one another. 

P&zMe/Swr/âce aecfzorz cwrve mefAocf: This method is applicable for parametric, 

algebraic, or point-cloud representations of the surface. A set of parallel 

planes/surfaces (drive surfaces) is intersected with the design surface (Bobrow, 1985; 

Oliver and Huang, 1994). While any general surface may be used for intersections, 

planes and cylinders are most commonly used. The key advantage of this method is 

the machining of multiple adjoining surfaces in which curves from different surfaces 

are joined together into a single tool path. Disadvantages of this method are the 

computational burden involved and the numerical stability of surface intersection 

algorithms as intersecting surfaces approach tangency. 

Prq/ecfKM cwrve This method is applicable for parametric, algebraic, or 

point-cloud representations of the design surface. In this method, the tool paths are 

created on a plane. The tool paths on the plane are then projected, in a given 

direction, onto the design surface (Choi ef aZ, 1988). The advantage of this method is 

that it is easy to create tool paths in a plane. Disadvantages of this method include the 

computational burden and numerical instabilities, especially when the layouts to be 

projected are far away from the design surface. 

cwrvg This method is applicable only the surface is represented in the 

parametric or algebraic forms. In this method, offsets of curves on the design surface 
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are considered (Suresh and Yang, 1994; Maekawa, 1996). Since geodesic curves on 

general surfaces are analogous to straight lines on planes, the offsets are calculated 

along the geodesic curves normal to the progenitor curve. The advantage of this 

method is that one directly deals with distances along the surface. This method yields 

a constant scallop height on the manufactured surface. This method also yields the 

shortest overall length of tool paths compared to the previous tool path generation 

methods. However, geodesic curves are expensive to compute and offset curves on 

surfaces suffer from similar problems as those experienced on planes (such as cusps 

and self-intersections). 

There are also some other tool path generation methods such as j^ece curve mcfAwf (Austin 

et al., 1997; Shah et al., 1991), Ao-cwrvafwre (Jensen and Anderson, 1992), etc.. 

Extensive reviews on tool path planning maybe found in Marshall and Griffiths (1994), 

Dragomatz and Mann (1997), Jenson and Anderson (1996), S arma (2000). 

1.2 2.5DNC Machining 

The majority of industrial milling tasks can be performed using 2.5D machining. This is 

partially due to the fact that a surprisingly large number of mechanical parts are 2.5D and 

even the more complicated objects are usually produced from a billet by a 2.5D roughing and 

3D finishing. Thus the computation of the tool path for 2.5D machining is one of the most 

important issues in NC machining. 
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Tool path planning is needed to execute both rough cuts and finish cuts in pocketing and 

contouring. Generation of the geometric profile of the tool path is the first stage. 

Interpolation methods are then applied to generate the NC code for machining. 

Among tool path generation techniques for pocketing and contouring, Zigzag and confowr 

methods are widely used in practice. 

(a) (b) (c) 

Figure 1.1. Tool path generated from zigzag (a), contour parallel (b), and morphing (c). 

In zigzag method as shown in Figure 1.1(a), the tools are moved along line segments which 

are parallel to a reference line selected initially. The zigzag tool paths are bi-directional tool 

paths which cause the tool to cut alternately along the spindle direction and then against it, 

giving respectively conventional and climb cuttings. This alternate change of cutting mode 

creates a difference in cutting speed, and leads to problems such as non-uniform surface 

quality, machine chatter and shorter tool life. A variant referred to as zig cutting has uni

directional tool paths. By using only one cutting direction the cutting speed is kept uniform. 
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However, there is a considerable amount of non-productive time involved in returning the 

tool to the start-cut position at the end of each tool path. 

CoMfowr-para/W cutting is shown in Figure 1.1(b). In this method, normally successive 

offsets of the original contours are first generated. These offsets are then chained together 

into a single spiraling tool path that follows the contours. To find the successive offsets of the 

boundary, pair-wise intersection may be used. Although this approach is complex in 

computation (requiring testing each pair of segments for possible intersection), it has been 

used extensively. Additionally, Voronoi diagrams can be used to determine the offset curves 

more efficiently (Persson, 1978; Held, Lukacs and Ando, 1994). Pixel based method (Choi 

and Kim, 1997) is another method for generating the offsets. But it is time-consuming and 

requires a large amount of memory because of the application of Z-map. The contour parallel 

method is generally favored, especially in the case of complex shape machining, because it 

gives less machining time, better surface quality in comparison with the zigzag method. 

AfbrpAwzg techniques shown in Figure 1.1(c) is another method to generate tool path for 2.5D 

machining. In the method, tool paths are generated by moving the cutting tool along a series 

of linearly interpolated paths between the outer boundary and island contour. Since the 

proportional blending offset creates uneven offset curves, and is difficult to implement for 

complex shape, the method is suitable for pocketing with only one island positioned 

approximately in the center of the pocket. 
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Offset curve generation is one of the key steps in contour parallel machining. Given a plane 

curve r(f) with a regular parameterization on f e [0,1] the offset to r(f) at a distance d is the 

curve defined by 

f^(f) = r(f)±d»(f) For f e [0,1] (1.1) 

where /z(f) is the unit normal to r(f) at each point. Offset curves are thus '^parallel" to the 

original curve with constant normal distance. Depending on the shape of the generator curve, 

the offset curve can have loops that need to be trimmed out and gaps that need to be filled in 

for valid NC machining. For the most part, the geometrical features of the generator curve 

are retained by the offset curves. 

Once the tool path is generated, interpolation methods are used to generate NC code. In 2.5D 

machining, tool paths are approximated by straight lines or circular arc segments, as most 

CNC interpolators accommodate only such elements. Vickers and Bradley (1992) noted that 

the machining time is increased because of dwell between consecutive NC control 

commands. A large percentage of the machining time is spent either at less than optimum 

feed rate or actually waiting for the next instruction. For a given machining tolerance, a 

complex curve with more peaks and valleys needs more NC commands compared to a 

simpler (smooth) curve with less peaks and valleys for machining. Therefore, complex 

curves will require more machining time, compared to simpler curves of same length because 

of more dwell 

Machining time is a function of the length of the machining segment and the shape 

complexity of the machining segment for a given feedrate. As an example, consider 
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machining of a complex 2D profile from rectangular stock. This is similar to pocket 

machining with an island except that the wall effects are ignored. If the conventional contour 

parallel technique is applied, the tool paths for rough cutting, which are far away 6om the 

object boundary, have the same shape and geometry complexity as the tool paths for fine 

cutting close to the object boundary. However, in the rough cutting stage there is no 

necessity for the tool path to have all the geometric details of the object boundary. The 

machining efficiency may be improved by using simpler curves far away from the object 

boundary. 

In this research we demonstrate the application of multiresolution analysis based on the 

theory of wavelets in tool path generation. This is a novel application and provides added 

insight and a rich theoretical framework for some new tool path planning algorithms. The 

appearance of wavelets is a relatively recent development in mathematics. They give rise to 

hierarchical representation and have been successfully used for various tasks such as 

approximation theory, signal processing, image storage and compression, and content based 

retrieval. Recently the theory of wavelets and multiresolution analysis has also been applied 

to hierarchical editing of curves and surfaces in computer graphics. 

The theory of wavelets allows the representation of curves and surfaces at various levels of 

detail. A complex curve may be represented at various scales. At the higher scales, the detail 

features on the curve are included. At the lower scales the detail features are smoothed out 

and an approximate curve that shows the general trend of the complex curve is obtained. 
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This hierarchical curve representation can be used for 2D contour machining. Figure 1.2 

shows an illustration where, the region between the rectangular boundary and the shaded 

object needs to be removed. The tool paths are generated using the contour parallel method 

and alternatively using a hierarchical curve representation based on the B-spline wavelet. In 

the wavelet-based method, close to the 2D-object contour a high amount of detail is provide 

for accurate machining. However, as we move away from the 2D-object contour, the 

attention to detail is reduced. Low-resolution curves, after suitable offset modification, are 

used for the outer curves. Details are progressively added to the inner curves. This leads to an 

integrated rough and finish cutting strategy. The machining times may also be reduced 

because of the smoother curves in rough cutting. However, because of the variable offset that 

is introduced, there is potential for non-uniform chip thickness or uncut material to remain. 

The non-uniform chip thickness may be addressed by feedrate compensation to maintain a 

uniform cutting force if desired. To machine the uncut regions additional machining curves 

referred to as adaptive curves are used. 

S 

Contour parallel method Multiresolution method 

Figure 1.2. Cutting sequence for 2.5D object machining. 
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13 S-Axis NC Machining 

To achieve the intended performance of a product (e.g., an impeller or turbine blade) or 

capture its desired aesthetics (e.g., a car fender or hood), engineers and designers continually 

seek new methods and techniques for specifying part geometry. This has resulted in the 

development and use of entirely new classes of surfaces. 

Traditionally, the tool paths required to machine complex surfaces have been constructed 

using numerical control languages or CAD systems. These languages or systems generate 

numerical instructions for multi-axis machine tools based on defined part geometry and 

specified machining parameters. The numerical instructions are generated by first reducing 

the dimensionality of the surface to that of planar or isoparametric curves. 

Milling machines used to machine complex surfaces have three axes of simultaneous tool 

positioning control and zero, one or two axes of simultaneous tool orientation control. While 

3-axis milling machines (those with no tool orientation capabilities) have historically been 

the choice to machine complex surfaced parts, 5-axis milling machines have increasingly 

been used in industry. As compared to 3-axis machining, 5-axis machining (a simple 

example is shown in Figure 1.3) offers many advantages such as higher productivity and 

better machining quality. In 5-axis machining, the orientation of the tool can be determined 

by the two additional degrees of freedom so as to obtain efficient tool paths. Figure 1.4 

shows the tool orientation control in 5-axis machining. The angle of the tool in the plane of 
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motion is called the tool inclination angle a, and the angle of tool out of the plane of motion 

is called the tool tilt angle 

Figure 1.3. A 5-axis machining example 

Plane of 
motion 

Tool 
path 

Cutter Contact 
(CC) point 

Figure 1.4. Tool orientation in 5-axis machining. 
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For complex shapes, 5-axis tool path generation is a difficult process. There are three 

functions that must be accomplished simultaneously: (1) selecting the right tool; (2) 

determining tool orientation; and (3) covering the surface. Tool paths for 5 axis NC 

machining are typically generated from CAD/CAM systems. However, currently available 

CAD/CAM systems generate tool paths for 5-axis machining assuming the user has picked 

the right tool, and for a fixed user provided tool orientation. Some advanced systems provide 

the ability to interpolate tool orientations based on fixed user provided tool orientations at 

sample points. Collision avoidance is not considered by the CAD/CAM systems and 

typically users turn to NC machining verification systems to visually identify regions of 

collision. If collisions are detected at this stage, the user must accordingly change the tool 

orientations and perhaps even the tool path. This becomes a trial and error process, and for 

complex shapes such as turbine blades, 5-axis tool path generation can be time-consuming 

and worker intensive. 

Therefore, determining tool orientation is one of the most important steps in 5-axis 

machining. Research has focused on optimizing tool orientation with the intent of 

maximizing the material removal (Lee and Ji, 1997; Jensen et al., 1993; Kruth and Klewais, 

1994; Redonnet et al., 1998; Rao et al., 1996) and for collision avoidance (Chen and Woo, 

1992; Lee and Chang, 1995; Tseng and Joshi, 1994; Choi and Jerard 1998). Tool selection is 

another important problem in 5-axis NC machining. However, research on automatic tool 

selection for 5-axis machining is limited. Lee and Chang (1996) use the maximum effective 

cutting radius approach and Jenson et al. (2002) use a method based on curvature matched 

machining. 
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The above methods are computationally intensive involving surface curvature computation, 

visibility maps, or Voronoi diagrams, and are sometimes performed unnecessarily or are 

redundant because these decisions might be based on convex hull intersections. Moreover, 

current 5-axis tool path generation methods developed in the literature are not integrated with 

rough cut machining strategies and fine cut machining strategies being considered 

independently. The current research on tool path generation has been almost no consideration 

of generation of appropriate intermediate shapes as the references of NC programming. The 

tool cutting abihty and removal volume are disregarded (when only one geometric model for 

a final product shape is used as a reference for all of the rough-to-fine machining operation), 

or only be performed by a very experienced production engineer (when a series of 

intermediate geometric models for each rough-to-fine machining operation is manually 

designed). Moreover, redesign of the models may be needed if the tools or product shape are 

modified. Further, in current tool path generation methods, different theoretical frameworks 

are used for several important analyses such as tool orientation, tool selection and (gouge 

avoidance). 

Wavelets can provide a single theoretical framework for performing most of the geometric 

reasoning needed for efficient tool path generation in 5-axis NC machining. The application 

of wavelets can also minimize the need for these geometric algorithms and improve the 

computational efficiency when these geometric algorithms are needed. Most important, 

wavelet based multiresolution representations generate a series of intermediate shape models 

as the references of NC programming, in which the tool cutting abihty and removal volume 
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can be automatically considered, the amount of model data can be compressed, and the 

resolution of the models can be changed. In addition, multiresolution models represented by 

polygonal meshed surfaces are becoming more popular in CAD/CAM. However, there is 

almost no published literature about tool path generation directly from a multiresolution 

meshed representation. The wavelet representation is very conducive for tool path 

generation based on a meshed surface. 

Wavelets and multiresolution analysis may be used to hierarchically represent the original 

surface. Each hierarchical model successively approximates the final object shape. Thus 

rough-cuts can be made with the low-resolution models and finish cuts can be made with the 

high-resolution models. Wavelets may also be used to develop new multiresolution 

accessibility analysis algorithms for efBcient collision detection and avoidance. 

The rest of the report is organized as follows. The theory of multiresolution analysis and 

wavelets is briefly reviewed in chapter 2. In chapter 3, the tool path for machining 2D 

profiles from rectangular stock, based on the endpoint interpolating B-spline wavelets is 

derived. In chapter 4, an improved multiresolution tool path based on the convex hull is 

presented. Tool path planning in 5-axis machining based on multiresolution analysis are 

proposed in chapter 5. Conclusions are presented in chapter 6. 
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CHAPTER 2 WAVELETS AND MULTIRESOLUTION ANALYSIS 

This chapter provides some background on wavelets and multiresolution analysis. 

Multiresolution analysis is a simple mathematical tool that has found a wide variety of 

applications in recent years, including signal analysis (Mallet, 1989), image processing 

(DeVore ef a/., 1992), and numerical analysis (Beylkin ef a/., 1991). Informally, wavelets are 

the basis functions for multiresolution analysis. 

A signal or a function may be better understood if expressed as a linear decomposition over a 

basis. 

The basis functions are usually chosen to be orthogonal. For the Fourier series these basis 

functions are sin(&#of) and cos(&#(,f). On the other hand, the wavelet expansion is a two-

parameter system described by 

The coefficients a ^ are called as the discrete wavelet transform. The wavelet expansion 

gives a time frequency localization of the signal. A wavelet representation is much like a 

musical score where the location of the notes tells when the tones occur and what their 

frequencies are. Wavelet systems are generated from a single scaling function by simple 

scaling and translation. Therefore, if a set of functions is represented by a weighted-sum of 

yf(f - &) then a larger set of functions may be represented by yr(2f - &). Wavelets thus satisfy 

(2.1) 

(2.2) 
k j 
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the multiresolution conditions. The lower resolution coefficients can be calculated from the 

higher resolution coefficients, using a tree structured algorithm called a/z/fer 

Consider a discrete signal C, expressed as a column vector of samples jc",..., In our 

curve application described in Chapter 3, for example, the samples c" will be the curve's 

control points in 93 \ 

Suppose we wish to create a low-resolution version of C with a fewer number of 

samples m . The standard approach for creating the m samples of is to use some form 

of linear filtering and subsampling on the m samples of C. This process can be expressed as 

a matrix equation 

C"-'=v4"C" (2.3) 

Where ^1" is an m x /» matrix. 

Since C"' contains fewer samples than C, it is intuitively clear that some amount of 

details is lost in this filtering process. If is chosen appropriately, it is possible to capture 

the lost detail as another signal with m - m samples, computed by 

jy-i = (2.4) 

Where is an (m - m ) x m matrix, which is related to matrix . The pair of matrices ^4" 

and are called a/ia/yai;The process of splitting a signal C into a low-resolution 
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version C"^ and detail is called Usually 7» is roughly half of m, so 

that C"' and D""' are roughly equal in size. 

Note that C~' and D""' together have the same amount of information as C. If and 

are chosen correctly, then the original signal C can be recovered 60m C~' and D""' by 

using another pair of matrices f and g", called aymfAesz,?yz/fers, as follows: 

C (2.5) 

Recovering C hrom C*~' and D""' is called reco/wrrwcfzoM. 

The procedure for sphtting C into a low-resolution part C~' and a detail partD""' can be 

apphed recursively to the new signal C~'. Thus, the original signal can be expressed as a 

hierarchy of low-resolution signals C°,..., C ^ and details ..., as shown in Figure 

2.1. This recursive process is known as a/z/fer 

Figure 2.1. The filter bank 
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Since the original signal C can be recovered from the sequence this 

sequence can be thought of as a transform of the original signal signal known as a wmWef 

Note that the total size of the transform ,..., is the same as that of the 

original signal C, so no extra storage is required. 

In the following paragraphs we provide a simple introduction to wavelets and multiresolution 

analysis using Haar wavelets. The B-spline wavelets and the second generation wavelets are 

discussed next. 

2.1 Haar Wavelets 

To simply illustrate wavelets consider a sequence of numbers for instance with values 

8, 6, 3, 5 

This sequence can be represented using the Haar basis wavelet transform. First, the numbers 

are averaged in a pair wise manner. This results in the sequence 

7, 4 

This sequence however has some missing information from the initial sequence. More 

information can be added using "detail coefficients". The first detail coefficient may be 

taken to be 1 and the second detail coefficient as -1. We can recover the original numbers by 

the operations 
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7+1=8 

7-1=6 

4+(—1)=3 

4-(-l) = 5 

Thus the initial sequence (8 6 3 5) can be represented as (7 4 1 -1). The numbers (7 4) are 

the coarse values and (1 -1) are the detail values. This can be carried one step further to yield 

(5.5,1.5,1,-1) and is the wavelet transform of (8,6,3,5). 

For piece-wise continous functions, consider the open interval [0,1). A one number 

sequence is just a function that is constant over the interval [0,1). This may be represented as 

. A two number sequence has two constant pieces over [0 %) and [1/2 1). This apace is 

denoted as If this is continued further, K will include all piece-wise constant functions in 

the interval [0 1) with constant pieces over each of 2^ intervals. It is noted that the spaces K 

are nested and permits multiresolution analysis. 

c F '  c p :  c  '  

The basis functions for K are called scaling functions. A simple representation for K is the 

set of scaled and translated "box" functions 

(z) = ^(2^%-f), z = 0, 2^-1 

where, (2.6) 

[ l  f b r 0 < % < l  

[0 otherwise 
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+C2,0) *2,1) 

Figure 2.2. The Box basis for F. 

V(1,0) v(U) 
1 

1/2 1 0 1/2 

Figure 2.3. The Haar wavelets for PP\ 

Figure 2.2 shows the four box functions for P^. A new vector space deÊned as ^ is chosen 

as the orthogonal component of K in P^\ We can think of ^ as containing the detail in P^ 

that cannot be represented in K A collection of linearly independent functions spanning 

are called wavelets. The wavelets corresponding to the box basis are known as Haar 

wavelets. The Haar wavelets for fP* are as in Figure 2.3 and can be specified as 
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y/(%) = y/(2^ x - z) z = 0,...2^ 

wAere, 

(2.7) 

fl fbrO<%<!/2 
ty(%) = < 

[-Ifbrl/2<%^1 

y/W = 0 otherwise 

The sequence (8,6,3,5) can now be represented in as 

8(^o W + 6^ (%) + 3f>f (%) + 5^ (%) 

It can also be expressed in as 

7^0 W + W + ly/ô (^) - lW 

Finally it can be expressed in ^ as 

5 . 5 ^ o  ( % )  + 1 ( % )  +  l y / ô  W  -  W  

2.2 B-Spline Wavelets 

While the Haar basis functions offer advantages in terms of simplicity, orthogonality and 

very small support, they suffer from a lack of continuity. To this end, B-spline wavelets were 

developed by Chui (1992). This is a class of wavelets with t continuous derivatives 

constructed from piecewise-polynomial splines. In fact the Haar basis is the simplest instance 

of spline wavelets, resulting when the polynomial degree is set to zero. 
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In particular, the cubic endpoint-interpolating B-spline functions defined on a closed interval 

are of interest. The endpoint interpolating B-spline wavelet is one of the important wavelets 

used in hierarchical representation of curves and surfaces, and allows the decomposition and 

reconstruction of multiresolution shape functions using matrix calculations. 

To construct the endpoint-interpolating B-spline wavelets, three steps are needed. 

1. Define the scaling functions for a nested set of function spaces, 

2. Define an inner product, and 

3. Obtain the wavelet functions. 

The following paragraphs give a brief description on the generation of the cubic endpoint 

interpolating B-spline wavelet. 

Step 1: 

Given a positive integer * > 3, and a set of non-decreasing values %&+4 called 

the nonuniform B-spline basis functions of degree 3 are defined recursively as follows. 

For i=0, k, and for r =1,2,3, let 

if 3 JC < 

otherwise 
(2.8) 

V+r+l 

(Note: The fractions in these equations are taken to be 0 when their denominators are 0.) 



www.manaraa.com

23 

The endpoint-interpolatiiig B-splines of degree 3 on the interval [0,1] are obtained when the 

first and last 4 knots are set to 0 and 1, respectively. In this case, the functions 

(%),..., (z) form a basis for the space of piecewise-polynomials of degree 3 with 2 

continuous derivatives. For uniformly spaced cubic B-splines, & = 2^ + 2 and jc,,...,%* are 

chosen to produce 2^ equally spaced interior intervals. This construction gives 2^+3 B-

spline basis functions for degree 3 and leveland form the endpoint interpolating cubic B-

spline scaling functions. The knot vector used to define the function is: 

0,0, 0,0, ...,1-^-, 1,1,1,1 

At any hierarchical level y there are 2^ +3 control points and 2^ + 7 knots. Figure 2.4 shows 

a hierarchical representation of a curve using B-spline wavelets. Figure 2.4(a) is the original 

curve with 11 control points at scale 3. Figure 2.4(b) is the curve at scale 2 with 7 control 

points. Figure 2.4(c) shows the curve at scale 1 with 5 control points. The curve shown at 

Figure 2.4(d) is at scale 0 (lowest scale) with 4 control points. 

(a) (b) (c) (d) 

Figure 2.4. Hierarchical representations of a curve based on B-spline wavelets. 
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The condition that the function space K be nested is equivalent to requiring that the scaling 

functions be refinable. That is, for ally = 1,2,... there must exist a matrix of constants f ̂  

(this is the synthesis filter described in Equation 2.5) such that 

#/-'(%) = @/(x)f/ (2.9) 

Where, 0^ is a row matrix of all scaling functions at level y as shown in Equation 2.10. 

<»J = k <S/ •••. (2.10) 

The synthesis filter f ̂  is of dimension (2^ + 3) x (2^"' + 3). The entries of the synthesis filter 

can be developed using the theory of B-splines (Chui and Quak, 1992; Quak and Weyrich, 

1994). In Figure 2.5, matrix f ̂  is shown. The middle columns, for y > 3, are given by 

vertical translates of the fourth column, shifted down by 2 places for each column. 

6 0 0 0 
8 8 0 0 
0 8 8 0 
0 0 8 8 
0 0 0 16 

16 0 0 0 0 
8 8 0 0 0 
0 12 4 0 0 
0 3 10 3 0 
0 0 4 12 0 
0 0 0 8 8 
0 0 0 0 16 

Figure 2.5. The refinement matrix f ̂  for cubic B-splines. 
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16 0 0 0 0 0 
8 8 0 0 0 0 
0 12 4 0 0 0 
0 3 11 2 0 0 
0 0 8 8 0 0 . 
0 0 2 12 2 0 
0 0 0 8 8 0 
0 0 0 2 12 2 
0 0 0 0 8 8 
0 0 0 0 2 12 

Figure 2.5. Continued 

Step 2: 

The second step is the choice of an inner product and the standard inner product is used for 

this purpose (Equation 2.11) 

(/1 g) - (2.H) 

Step3: 

The final step is to find basis functions for the spaces that are orthogonal complements to 

the space 

Since the wavelets space ' is by definition also a subspace of , the wavelets 

V^ (x) can be written as linear combinations of the scaling functions (%). This means: 
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^-'(x) = 0'W(X (2.12) 

(jX is a (2^ + 3)x(2^ ) matrix (This is the synthesis analysis described in Equation 2.5), 

where is a row matrix of wavelet functions as in Equation 2.13. 

V'-' =k"' V!'' -, v£,_] (2.13) 

Since all functions in (z) must be orthogonal to all functions in (x), we know that 

' I ' ) = 0 for all ^ and /. In order to deal with all these inner products simultaneously, 

the notation is used to denote the matrix whose (&, Z) entry is | yr/"' ̂ . 

The orthogonality conditions on the wavelet can be rewritten as: 

[((&/-' 14^-')] = 0 (2.14) 

Substituting Equation 2.12 into Equation 2.14 yields 

[(*/-' 1= 0 (2.15) 

By imposing some additional conditions, such as small support, to the homogeneous system 

of linear equations, the matrix and the corresponding B-spline wavelets can be obtained 

(shown in Figure 2.6). 
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-1368 0 
2064 240 

-1793 -691 
1053 1053 

-691 -1793 
240 2064 

0 -1368 

-3W762 
574765 

1 

-33030599 
41383080 

633094403 
1655323200 

-19083341 
137943600 

4681957 
165532320 

-864187 
413830800 

27877 
1655323200 

0 

0 

0 

0 

— 7166 J 60 

333497715 
478112471 

-881412943 
956224942 

1 

-689203555 
956224942 

8833647 
28124263 

—74736797 
956224942 

6908335 
478112471 

0 

0 

0 

0 

6908335 
478112471 

-74736797 
956224942 

8833647 
28124263 

-689203555 
956224942 

1 

-881412943 
956224942 

333497715 

—7166160 
28124263 

0 

0 

0 

0 

27877 
1655323200 

-864187 
4I383080C 

4681957 
165532320 

-19083341 
137943600 

633094403 
l^l^OÙ 
-33030599 
41383080 

1 

-394762 
574765 . 

Figure 2.6. The matrix for Cubic B-splines. 
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= 

-394762 
574765 

-33030599 
413S30KU 

— i 9OS3341 
1J 7943600 

-864187 

27877 

0 

-1050072320 
4096633377 

2096854390 
2M9435I67 

-II07Û246427 
j 9^/74066% 

0 

0 

0 

0 

0 

0 

1732435]03 
357T77Tm 

-27809640281 
1655323200 442436404716 

171326708 

— 138166 ,•* 
36869700393 

0 

0 

0 

0 

0 

0 

307»% 
19335989 

—6643465 

0 

0 

0 

-1 
'34^)6 24264 

6646005 31 
19335989 6066 

—559 
"5835" 

988 
3033 

-9241 -5865160 
12132 

626IS2K 
19335989 

-13281* -924 
19335989 

9S20S 
M359S9 

9335989 

0 24264 

Figure 2.6. Continued 

The scaling functions and the wavelet functions have now been found. To use B-splines 

wavelets, wwg/ef decompaszfzoM (Equation 2.16) and mzve/ef reco/ufrwcfzon (Equation 2.17) 

need to be implemented. 

= ̂  (2.16) 

(2.17) 
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Where, c' and are column matrices of the corresponding coefficients. The coefficient 

matrix can be thought of as the % and ^-coordinates of a curve's control points in The 

wavelet decomposition allows one to decompose a curve into a lower or coarse scale. As 

shown in Equation 2.16 the scaling coefficients c^ and wavelet coefficients are 

obtained by solving the linear system. The wavelet reconstruction is used to recover the 

original or higher level curve from the lower level curve as in Equation 2.17. The wavelet 

coefficients may be changed to edit the curve details and the scaling coefficients may be 

changed to edit the sweep of the curve. A detailed description of applying B-spline wavelets 

to curve or surface editing may be found in (Finkelstein and Salesin, 1994; Stollnitz ef aA, 

1995). 

23 Second Generation Wavelets 

2.3.1 Basic Ideas 

Classic wavelet constructions dejBne the wavelet functions as dyadic translates and dilates of 

one particular, fixed function. These traditional wavelets are referred a? ̂ zrsf generafzo/z 

wave/ef. They have been extensively used for representing, manipulating, or compressing 

data on the real line or plane but they are not sufficient when it comes to multiresolution 

analysis of meshes with arbitrary topology that are most frequently found in computer 

graphics applications. It has been shown that all finite classical wavelets maybe represented 

using aeco/wf ge/zerofzon mzve/e#. 
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The main philosophy behind second generation wavelets is to achieve all desirable properties 

for wavelets adapted to more general settings than the real line or plane. The key realization 

here is the fact that translation and dilation are not required in order to obtain wavelets with 

the desired properties. The only invariant that needs to be maintained is that a basis function 

can be expressed as a finite linear combination of wavelet basis functions in a deeper, finer 

level. 

First generation wavelets are typically constructed with Fourier analysis because translation 

and dilation become algebraic operations under the Fourier transform. In the case of second 

generation wavelets, though, the Fourier transform can no longer be used as a construction 

tool. An alternative construction method, called the Zz/fz/zg jcAeme was introduced by 

Sweldens (1995). 

Lifting allows us to build our bases in a fully biorthogonal framework. This ensures that all 

bases are of finite (and small) support and the resulting filters are small and easy to derive. 

The filterbank algorithm of the second generation wavelet is briefly presented as follows. For 

more detailed theory about the lifting scheme and second generation wavelets, readers can 

refer to Sweldens (1995) and Schroder and Sweldens (1995). 

2.3.2 Filterbank Algorithm 

Given a base mesh / final mesh pair (M°,M" respectively), the construction generates » 

hierarchical levels of resolution such that 
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c M '  c - -  c M - '  c  - c M " " '  c M " .  

We deEne (%) to be the Ah scaling function at resolutiony, while % represents a point over 

the domain. (D^ (%) is defined as the matrix consisting of the z functions (%). 

We now write the matrix 0^ (x) as 

Where (x) consists of the scaling functions (x) associated with the old vertices of 

, while (x) refers to the scaling functions associated with vertices added to the last 

mesh. 

Let y/Y (x) denote the Ah locally supported wavelet approximation, and let (x) be the row 

matrix of these functions. The analysis and synthesis filters are defined by 

0^ (x) = (x) (x)] (2.18) 

[0^(x) ^^(x)] = 0^(x)[^ CM (2.19) 

and 

(2.20) 

respectively. 

The hfting scheme is used to construct biorthogonal surface wavelets. The strategy employed 

is to construct "lazy wavelets" (x) consisting of the scaling functions associated with 

the midpoints of the edges of . 
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For lazy wavelet construction, we define 

lazy *£lazy OjL] -

0 

1 

0 

1 

0 

0 

0 

(2 21) 

Where 7% is merely the matrix of connectivity information of the new vertices at step y. In 

order to construct "k-disk" wavelets (StoUnitz, Derose and Salesin, 1996) the above matrices 

are modified by the matrix (defined in Equation 2.24) in the following fashion: 

= (2'22) 

» 
1 1 i 

(2.23) 

[< 4)/ I <D/ >]^ = (f^y[< 0^' I >] (2.24) 

Let denote the column vector of vertices of and denote the corresponding matrix 

of wavelet coefficients. Analysis can be defined by 
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r = ,4^+' (2.25) 

PT = (2.26) 

while synthesis is dejBned by 

(2.27) 

233 Subdivision Connectivity of Arbitrary Meshes 

Lounsbery (1995) pioneered the multiresolution representation of a mesh using subdivision 

wavelets, later generalized to second generation wavelets by Sweldens, Schroder and others. 

The multiresolution representation of a mesh consists of a simple base mesh together with a 

sequence of local correction terms, called wavelet coefficients, capturing the detail present in 

the object at various resolutions. 

These methods have a prerequisite that the input mesh have subdivision connectivity, or in 

other words, that the mesh can be obtained from a simple base mesh by recursive subdivision 

(typically, 4-to-l triangle splitting). Such a mesh with subdivision connectivity is referred to 

as a semi regular mesh. The complex meshes obtained from automatic laser range scanning 

and digitizing, for example, certainly do not have the subdivision connectivity property, 

which is a serious limitation. Voronoi tiling (Eck ef a/., 1995), fine to coarse decimation 
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(Lee ef aA, 1998) and volume data sets (Wood ef a/., 2000) are strategies that have been used 

to generate a semi-regular mesh from an arbitrary mesh. 
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CHAPTERS TOOL PATH PLANNING FOR 2.5D MACHINING 

In this chapter, a method to generate NC tool path curves using endpoint-interpolating B-

spline wavelets is developed. The tool path consists of basic tool paths and adaptive tool 

paths. A complex curve is divided into smooth and non-smooth segments using comer point 

detection based on curvature analysis. The smooth segments are offset by moving the control 

nets. The non-smooth segments are first decomposed into a coarse scale and then the coarse 

scale control nets are offset. Closer to the object a higher scale is used for the decomposition 

to ensure that the contour of the object is followed closely. Farther away from the object a 

lower scale is used, as there is no necessity to follow the object contour closely. Adaptive 

curves are used to fill in between adjacent offset curves in non-smooth regions. This strategy 

leads to an integrated rough and finish cut method for tool path generation. 

The generation of tool paths for 2.5D objects based on wavelets broadly involves the 

following steps. 

1. Detect comer points in the initial contour based on curvature analysis; 

2. Partition the whole contour into smooth regions (low density) and non-smooth (high 

density) regions; 

3. Wavelet decompose non-smooth regions to adjacent lower level; 

4. Offset the contour based on wavelets. Smooth regions and non-smooth regions are 

offset with different distances; 
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5. Repeat steps 3 and 4 to current offset curve to generate the machining path sequence 

progressively outwards; 

6. Add adaptive path curves between adjacent offset curves in non-smooth regions. 

These steps are also shown in Figure 3.1. 

Coarse cutting sequence 

Fine cutting sequence 

Contour Curves 

Contour Segmeatation 

Comer Point Detection 

Generating adaptive path curves 

Constructing basic tool path 

Figure 3.1. Schematic of steps for wavelets based multiresolution tool path generation. 

The overall algorithm for wavelet based tool path generation is shown in Figure 3.2. 
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Input original curve 

Detect comer 

Segment curve into smooth 
and non-smooth regions 

Smooth regions Non-smooth regions ^ 

Wavelet decompose non-smooth 
region to adjacent lower level 

Offset control nets of 
smooth region by do Calculate d 

Offset control nets of 
lower level curve by di 

Connect smooth and non-smooth offset control nets 

Construct offset curve as tool path 

Is machining 
region 

covered ? NO 

YES 

Generate adaptive curves 

Figure 3.2. Flowchart for multiresolution tool path curve generation 



www.manaraa.com

38 

3.1 Corner Point Detection 

A corner point is a dominant point in a curve where either the gradient of the curvature is 

very steep or there is a curvature discontinuity. We adopt the algorithm developed by Wang 

gf a/. (1999) to detect the comer points. Curvature functions of a B-spline curve at different 

scales y can be estimated using 

Where, « is the arc length. The B-spline wavelet transforms M^C(w,y) and M^C(w,y ) of the 

curve C(w,y) are defined as the convolution of the curve with the first and second derivatives 

of the nth-order B-spline, respectively. Wavelet transform vectors [(^%(«, y ), ̂ y(«, y)]^ and 

[^%(w,_/),^jx(«, y)]^ are computed using a fast subdivision scheme. 

The comer points of the curve correspond to the locations of peaks in the above curvature 

functions. The multiscale information is used to trace these comer points and correct their 

locations with a coarse-to-fine matching strategy. Among the candidate comer points 

obtained from the above procedure, those with significant changes in direction are identified 

as comer points. 

(25) 

3.2 Object Contour Segmentation 
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After the comer points are detected, the object contour is segmented into smooth regions and 

non-smooth regions based on the density of comer points. Non-smooth regions are curve 

sections where a large number of comer-points are concentrated in a comparatively small 

section of the curve. Geometrically speaking these are curve segments in which peaks and 

valleys appear frequently. A smooth region of the curve is the section with few comer points 

or without any comer point. 

As a simple rule that works well for test cases that we have experimented with, the object 

contour is segmented based on a threshold value v = Z/m, where Z is the length of the object 

contour and m is the number of comer points. The parameter v gives the average length 

between two comer points. If the arc length between two adjacent comer points is larger than 

the threshold value v, then this section is intuitively a smooth section for the object contour 

under consideration. First, smooth sections are identified based on this threshold value. 

Next, the segment of the object contour between two adjacent smooth regions is identified as 

a non-smooth region. The entire object contour is thus decomposed into smooth and non-

smooth regions. 

An example of segmentation is shown in Figure 3.3. Points A, B, C, D, E, F, G and H are 

comer points detected in the curve. Segments AH and DE are identified as smooth regions. 

Segments ABCD and EFGH are the non-smooth regions. 
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Figure 3.3. Segmentation of object contour based on corner point detection. 

T 

(a) 

Figure 3.4. Relative smooth and non-smooth regions on an object contour. 

In Figure 3.4 we compare two objects with a similar feature. In Figure 3.4(a) segment ABC 

is identified as a non-smooth region. However, in Figure 3.4(b) the segment ABC is 

identified as a smooth region. Therefore, this simple threshold based segmentation identifies 

the principal non-smooth regions in an object, for example arc segment (D,..., T) in Figure 



www.manaraa.com

3.4(b). We believe that this type of object segmentation is reasonable, as the wavelet 

decomposition is most useful in the principal non-smooth regions. 

3.3 Wavelet Decomposition 

Each non-smooth region at scale level y is decomposed to the adjacent lower level (/-I) using 

wavelet decomposition (Equation 2.16). The new curve segments in non-smooth regions can 

be considered as an approximation to the original segments. The wavelet coefficients found 

in this step are used later in selecting the offset distance in non-smooth regions. The smooth 

regions are left unchanged. 

3.4 Basic Offset Curve Generation 

Offsetting the object contour is a necessary procedure to generate tool paths. In this research, 

the offset curve is obtained by offsetting the control polygon after wavelet decomposition. 

The two algorithms, namely Too/cwrve and are used to generate a single tool 

path curve. The object contour is assumed to comprise of smooth segments ,5,, ̂ ,..., and 

non-smooth segments , . - , - The algorithm Tbof curve decomposes each non-

smooth region into the adjacent lower level. In the decomposition process, if the higher level 

curve does not have the number of control points as required for multiresolution analysis, 

then additional control points are inserted to match the scale requirements. The smooth 

regions ^,^,...,^are left unchanged. The algorithm finds the offset curve to the 
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smooth and non-smooth regions based on Tiller and Hanson's method (1984), which 

compares well with other offset techniques (Elber ef a/., 1997). 

Algorithm Too/curve 

Begin 

; = i; 

While z < w (number of smooth regions) do 

Offset the control net of smooth region ,S, by a distance (Refer to Algorithm 

<#gf); 

i = i  +1 ; 

End; 

i = l; 

While z < f (number of non-smooth regions) do 

Identify » = number of control points in non-smooth region N,; 

Scale level y = log^^g, - 3) ; 

While y != integer do 

Insert an additional control point to Af,. by subdivision; 

Recalculate y; 

End; 

Wavelet decompose ^ to lower scale level y — 1 to form wavelet curve AT/"' ; 

Offset the control net of by a distance (Refer to Algorithm o^sef); 

z = z + l; 
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End; 

Connect the offset control nets of both smooth regions and non-smooth regions in the original 

order; 

Construct B-spline offset curve O from the connected control net; 

Return curve O; 

End; 

Algorithm 

Begin 

Input a smooth region S or non-smooth region N; 

Identify the control net w, the set of control points; 

Deviation := oo ; 

Specify offset tolerance f; 

While deviation > f do 

Offset normally each leg of w (as line segments) a distance d (<f = ^for smooth 

region; d = d, for non-smooth region) to form a new set of control points v; 

Construct curve O defined by v; 

Check the deviation of curve O from the true offset; 

End; 

Retom v; 

End; 

The value of the offset in the smooth region, do, is decided by the tool radius r, and required 

machining precision. In this paper, we set ^ . In the non-smooth region, if the offset 
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value di is set as r, there is a possibility that the offset curve O at lower level will intersect 

with the original curve C. In order to avoid this intersection, the value of d] should be set 

higher than r,. 

Figure 3.5. Generation of an offset contour for a telephone shaped object. 

Different offset distances to smooth regions and non-smooth regions are applied. Smooth 

region (curve ABC) is offset by distance do. Non-smooth region (curve CD A) is offset by 

distance di (di>do). 

Figure 3.5 shows the generation of an offset contour using the comer point detection and 

wavelet decomposition for a telephone shaped object. Although different regions of the curve 

are offset by different amounts, the continuity of the entire offset curve is still maintained. 

This is because we offset the control polygon of the original curve, and then, generate the 

offset curve from the new control points. The above algorithms TboZ/xzf/z cwrve and 
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are applied repeatedly to the newly generated offset curve to generate subsequent offset 

curves. These offset curves are the basic tool paths. 

The value for may be computed from the stored wavelet coefficients. Figure 3.6 shows an 

offset curve O to the high-level curve CX (at level/) after wavelet transformation in a non-

smooth region. is the lower level curve at levely-l. The wavelet offset curve 0 can be 

obtained from by offsetting a distance = ft + ei. As shown in this Figure 3.6, ei and 

are the maximum deviation ( 1°° error) of from CX. The values of and ez may be 

estimated, by converting the B-spline curve to a set of Bezier curves and using the convex 

hull properties of the Bezier curve (Bartels ef a/., 1987). If fX is de&ned as a column vector 

High level curve 

curve 

Low level curve 
after decomposition 

OSset curve 

Figure 3.6. Offset distance d% in non-smooth region. 

(3.1) 
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Where, is the B-spline to Bezier conversion matrix, is the synthesis filter as in 

Equation 2.5 and is the wavelet coefficients. The vector provides a measure of the 

distance that the Bezier control points migrate when decomposing the more detailed curve at 

level y to the approximate curve at level Since Bezier curves are contained within the 

convex hull of their control points, the magnitudes of the entries of provide conservative 

bounds on approximations to the curve due to truncating wavelet coefficients (Finkelstein 

and Salesin, 1994). 

3.5 Adaptive Tool Path Curves 

In non-smooth regions offset distance d, is chosen to be larger than the tool radius , to 

avoid the intersection of the lower level offset curve with the higher-level (detailed) parent 

curve. Since ,, the distance between the tool center and the parent curve, is greater than the 

tool radius, some areas will remain uncut. Adaptive path curves need to be constructed in 

these non-smooth regions. 

The adaptive tool paths are constructed by interpolating between two adjacent basic tool path 

curves in the non-smooth region. Each non-smooth region (scale/) on the object contour 

is progressively decomposed to lower scale curves = y -1,... ,0. Interpolation between 

two adjacent scale curves can be performed by introducing new curves that are at 
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intermediate fractional scales. A curve at the fractional level m + f (f e [0,1]) to interpolate 

the curve at level m and level m+l may be obtained as follows. 

V (3.2) 

Where, c" is the set of control points on a JV", matrices and g" ' are the wavelet 

decomposition matrices as described in Equation 2.16 and c""*' is the newly computed set of 

control points. 

Path curve in seal© m 

Path curve in scale m+1 

Figure 3.7. Adaptive tool path curves. 

A set of interpolating curves between the two non-smooth regions in and TV/"*' are 

obtained when f increases from 0 to 1. These curves are used as adaptive tool path curves. 

This scheme provides valid coverage of the machining area. The maximum deviations 

between and is given by e, + 2% + r, as shown in Figure 3.6. Therefore, the 
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number of adaptive curves » that is needed between two adjacent scale curves can be 

calculated as: 

% = (e,+ez)/r, (3.3) 

Figure 3.7 shows an illustration of adaptive curves based on this technique. 

3.6 Tool Path Simulation 

The algorithm for tool path generation is implemented using Matlab on a UNIX workstation. 

Examples are presented to illustrate the tool path generation based on B-spline wavelets. 

Figure 3.8(a) shows the basic tool path curves for a mountain shaped object. The basic tool 

path curves resemble the object contour close to the object boundary. The tool path curves 

become coarser as the distance from the object boundary increases and unnecessary detail 

features are avoided to improve machining efficiency. In Figure 3.8(b) the adaptive curves 

are added. Figures 3.9(a) and 3.9(b) show the basic and adaptive tool path curves, 

respectively, for a telephone shaped object. 

An airplane shaped object and a rabbit shaped object are also shown to illustrate the wavelet 

based tool path. Figures 3.10 and 3.11 show the tool path. In (a) of Figures 3.10 and 3.11, 

basic tool path curves are shown. Adaptive tool path curves are added in (b). If necessary, the 

outer boundaries can be made linear. 
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Figure 3.8. Wavelet based tool path for mountain shaped object. 

(a) (b) 

Figure 3.9. Wavelet based tool path for telephone shaped object. 
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Figure 3.10. Tool path for an airplane shaped object. 

Figure 3.11. Tool path for a rabbit shaped object. 
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The rabbit and the telephone objects were machined by end milling on a 3-axis Fadal CNC 

machine using the wavelet based tool path as shown in Figure 3.12. The machined samples 

confirm that the wavelet-based approach provides an efficient and valid coverage. A ball 

end mill (0.25in diameter) as opposed to a flat end mill was used to show the cut sequence. 

Figure 3.12. Machined samples using wavelet-based tool paths. 

3.7 Discussion 

Wavelet theory is a promising technique for tool path generation for NC machining. The 

cutting efficiency can be increased using coarse and fine curves. In finish cutting, high level 

or detail curves are used as tool paths for high accuracy. In rough cutting, however, coarse 

level curves are used. Thus, machining time reduction can be obtained because of the simpler 

curve geometry at the coarse level. 
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The traditional contour parallel offset technique and the wavelet-based technique are 

compared for the mountain shaped object and the telephone shaped object. In the 

comparison, the machining areas are assumed equal and the machining time is compared 

using the ProCAM TekSoft-2D machining simulation software. 

In Figure 3.13(a), the tool path generated by contour parallel method is shown for the 

mountain shaped object. It can be observed that the same level of detail is maintained at any 

distance from the object boundary. In Figure 3.13(b) the wavelet based tool path is shown. 

Here, the tool path curves get coarser farther from the object boundary. This results in 

improved machining efficiency in two ways. First, the tool path length is reduced compared 

to the contour parallel offset method. Second, the tool path curves are less complex and the 

number of discontinuities is reduced. As shown in Table 3.1, the tool path length is reduced 

from 752.37in in the contour parallel method to 510.19in in the wavelet-based method. This 

results in a reduction in tool path length of 32%. The machining time in the wavelet-based 

method is reduced to 51.75 min as compared to 65.03 min in the contour parallel method. 

This results in a 20% reduction in machining time. 

In Figure 3.14, the contour parallel (Figure 3.14 (a)) and wavelet-based tool path (Figure 3.14 

(b)) are compared for the telephone shaped object. As shown in Table 3.1, in this case the 

tool path length is reduced from 914.38in to 835.47in. This is a decrease of 9%. The 

machining time is reduced from 77.52 min to 71.87 min corresponding to a decrease of 7%. 
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Figure 3.13. Machining simulation comparison for mountain shaped object. 

(a) (b) 

Figure 3.14. Machining simulation comparison for telephone shaped object. 

It can be observed that the saving in machining time depends on the type of object 

considered. The machining time is reduced more in the case of the mountain shaped object 
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compared to the telephone shaped object because the tool path length is reduced by a larger 

percentage. The percentage reduction in tool path is related to the geometry of the object. In 

general, the wavelet-based method offers more savings in machining time when the number 

of non-smooth segments in the object contour is higher. 

The adaptive curves can however cause some over-machining. While this problem may be 

solved using sub-isocurves (Elber and Cohen, 1994), the adaptive curves appear only in the 

finish cutting stage, and the machining time increase is less noticeable. Tool stops are 

introduced at the end points of the adaptive curves and can contribute to a small increase in 

machining time. 

Table 3.1. Comparison of wavelet based method and contour parallel method 

Contour parallel method Wavelet based method 

Tool path 

length (in) 

Machining 

time (min) 

Tool path 

length (in) 

Machining 

time (min) 

Mountain shaped 

object 
752.37 65.03 510.19 51.75 

Telephone shaped 

object 
914.38 77.52 835.47 71.87 
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(Tool radius is 0.25in, spindle speed is 3500 RPM, XY feedrate is 30 ipm, number of steps in 

Z-axis is 4. Work-piece size for mountain shaped object is 4in x 6in, and for the telephone 

shaped object is 5in x 7in). 

Smoother tool paths improve machining efBciency by avoiding uncut areas as well. Figure 

3.15(a) and Figure 3.15(b) show the contour parallel tool path and wavelet based tool paths, 

respectively for the mountain shaped object. As noted earlier, the progressively lower detail 

offset curves are increasingly smoother as we move away from the object boundary. As a 

result for the same sized tool, the uncut area is either eliminated or reduced for wavelet based 

machining as compared to contour parallel machining (Figure 3.15). 

Smoother curves obtained in wavelet-based machining can also be beneficial for tool 

selection. Larger sized cutting tools can be used to machine the coarse curves, away from the 

object boundary, and corresponds to the rough cutting stage. This may not be always possible 

with current offset techniques, particularly if sharp comers in the object boundary are 

propagated in each offset curve. 

(a) (b) 

Figure 3.15. Uncut regions that exist in contour parallel method (a) may be reduced in 

wavelet based method (b). 
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3.8 Summary 

Wavelet based tool path planning was applied to machining 2D contours. An integrated 

rough and finish cut strategy was developed. The wavelet method results in exact offsets 

close to the object boundary as in the contour parallel method, but approximated or coarse 

curves are used away Irom the object boundary. This results in simpler curves in rough 

machining. Simulations indicate that the wavelet based tool path lengths are shorter and also 

simpler in terms of the geometry. Machining time saving of up to 20% was obtained. The 

smoother curves in wavelet tool paths also reduce the uncut areas. Larger tool sizes may also 

be selected in rough machining because the tool path is 6ee of any sharp comers. 

Wavelet based tool path planning still uses curves as tool paths in rough machining. 

Interpolation methods are then applied to generate the straight lines or circular arcs for 

practical machining. In next chapter, we introduce an improved multiresolution tool path 

generation method based on the convex hull techniques. Compared to the method presented 

in this Chapter, the improved method improves the rough machining efficiency. Thus, the 

whole rough-to-fine tool path lengths and machining time are reduced. 
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CHAPTER 4 IMPROVED MULTIRESOLUTION TOOL PATH 

PLANNING BASED ON LOOSE CONVEX HULL 

In Chapter 3, we introduced a wavelet based multiresolution technique for generating an 

integrated tool path for rough and fine machining. High-resolution offset curves are used 

close to the contour while low-resolution offset curves are used farther away from the 

contour. But, the machining efficiency is not high enough because large number of curved 

geometries are still used as tool paths, which are still relatively complex for NC machining 

and will result in large and data-dense G-code program files. In addition, the wavelet curve 

construction is not easy because knot inserting and deleting are involved. Since most CNC 

interpolators today accommodate only straight line and circular arc elements, intuitively, the 

cutting efficiency in the method could be improved by applying straight lines and circular 

arcs as tool paths, especially in rough cutting. 

Chuang and Lin (1997) developed a method, based on the convex hull property of Bezier 

curves, in which the portion of the contour defined by a Bezier curve is replaced by parts of 

its convex hull on the pocket side. Therefore, the new pocket boundary is redefined by only 

segments of straight lines. Furthermore, recursive subdivisions on Bezier curves are used to 

improve the cutting accuracy with an allowance criterion based on sizes of convex hulls. 

However, the line segments approximating curve can only achieve continuity. After the 

approximate line segments are offset for tool path generation, the machining paths cause 

discontinuity and sharp comers at joints of line segments. Chuang and Kao (1999) improved 
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above method by applying biarc fitting and single arc fitting method to construct a 

smooth, C' continuous curve. Thus, sharp comers and abrupt direction change on tool paths 

can be greatly reduced. 

In Chuang and his collègues' method, convex hulls are used to avoid overcut. In fact, convex 

hulls could be used to construct rough cutting paths. The convex hull is an approximate 

representation of original Bezier curve or B-spline curve. If we construct tool paths in rough 

cutting by offsetting the convex hull of the original curve. The geometric shape of the 

original contour curve would be kept to some degree, and most important, the cutting 

efficiency could be improved because only straight lines are used. No other complex curved 

geometries, and no further interpolation computation is needed. 

In this Chapter, we propose a tool path generation method based on the multiresolution 

analysis and convex hull techniques. This is an expended work from our previous work in 

Chapter 3. 

The rest of the chapter is organized as follows. In section 4.1, the loose convex hull and its 

offset technique are derived. In section 4.2, wavelet curves clipping is introduced. Tool path 

simulations are presented in section 4.3. In section 4.4 the wavelet and convex hull based tool 

path is compared with the contour parallel method. Conclusions are presented in section 4.5. 

4.1 Loose Convex Hull 
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The B-spline curve has the convex hull property, which is the B-spline curve lies in the 

convex hull of the control points. The convex hull of the control points is, to some degree, an 

approximate representation of the original curve. The convex hull and its offsets conceptually 

can be used as tool paths during rough cutting. The number of straight line segments (legs) in 

the convex hull polygon will affect the efficiency of rough cutting. As shown in Figure 4.1, 

The tool paths in Figure 4.1(a) and (b) cover the same areas, and the tool paths in (b) have 

less comer points compared to (a). Generally, the tool paths in (b) results in less machining 

time compared to those in (a), because of less dwell time in practical machining. Thus, in 

order to improve the machining efficiency, The number of legs in original convex hull 

polygon probably need to be reduced. The new convex hull polygon after reducing the 

number of legs is called as the Zoase ccvzvex Aw//. The loose convex hull has less number of 

edges, and is required to be approximate to the original convex hull as much as possible, hi 

the following, we give a simple algorithm ZoareCoTzvexfWf to construct a loose convex hull 

from its original convex hull. 

(a) (b) 

Figure 4.1. Machining time and the number of edges in convex hull. 
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Algorithm Q 

Begin 

Construct the convex hull of B-spline shape curve; 

Set threshold value Z; 

i := 1 ; 

&:=0;  

w >= 0; 

While z < 7z (number of legs) do 

Compute the length of leg z; 

While 7, <1 do 

A := A: +1; ( A: is the number of legs whose length is less than 1) 

a* =4; 

End; 

i : = i  + 1  ;  

End 

;:=1; 

While z <tdo 

If a, is not adjacent to , Then 

De/gfg 

Eke 

% := w +1; ( w is the number of combined legs) 

Combine and into f, ; 
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End If; 

m := w 

Z. = A 

ZoaseConvexHw# 0; 

End; 

End; 

In above algorithm, we delete short leg a, if it is not adjacent to any other short legs, as 

shown in Figure 4.2(a), or we combine short legs a, and if they are adjacent to generate a 

new leg , as shown in Figure 4.2(b) for adjacent two short legs. First, the bi-sector line is 

used in the intersecting point between two adjacent short legs a, and . A straight line 

perpendicular to the bi-sector line is intersected to the adjacent two edges to generate a new 

leg f,. The methods of deleting and combining more than two adjacent short legs are similar. 

Figure 4.2(c) and (d) shows the situations for three and four adjacent short legs, respectively. 

(a) (b) 

Figure 4.2. Loose convex hull generation. 
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\ .2 

C=> 

(C) (d) 

Figure 4.2. Continued 

Figure 4.3 at below is the original convex hull (Figure 4.3(a)) and loose convex hull (Figure 

4.3(b)) for a phone shaped object. Only deleting operation is involved to construct the loose 

convex hull of the shape. 

(a) (b) 

Figure 4.3. Convex hull for the phone shaped object. 
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The loose convex hull will be used to generate rough cutting path. To do this, first we simply 

offset each straight line leg of the loose convex hull by an offset distance r, which is the tool 

radius. Then, adjacent offset straight lines are connected by a circular arc, whose radius is r 

and center is the intersection point of the two straight line legs in original loose convex hull. 

The offset is illustrated in Figure 4.4. 

The loose convex hull is offset successively to form the tool path for rough machining. The 

loose convex hull offset for the phone shaped object is shown in Figure 4.5(a). Figure 4.5(b) 

shows the successive offsets as tool paths. 

Figure 4.4. Convex hull offset 

(a) (b) 

Figure 4.5. Loose Convex hull offset for the phone shaped object. 
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4.2 Wavelet Curve Clipping 

In the region between initial object contour and its loose convex hull, Wavelet based 

multiresolution curves, as described in Chapter 3, can be used as fine tool paths for 2.5D 

machining, 

The generation of tool paths for 2.5D objects based on wavelets broadly involves the 

following steps as described in Chapter 3: 

1. Detect comer points in the initial contour based on curvature analysis; 

2. Partition the whole contour into smooth regions (low density) and non-smooth (high 

density) regions; 

3. Wavelet decompose non-smooth regions to adjacent lower level; 

4. Offset the contour based on wavelets. Smooth regions and non-smooth regions are 

offset with different distances; 

5. Repeat steps 3 and 4 to current offset curve to generate the machining path sequence 

progressively outwards; 

6. Add adaptive path curves between adjacent offset curves in non-smooth regions. 

After wavelet based tool paths are generated near object boundary, the loose convex hull, 

actually acting as a convex polygonal clipping window, clips away all wavelet curves 
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segments lying outside the loose convex hull polygon. The clipping process is actually B-

spline curve clipping against convex polygonal window. 

The curve clipping algorithm relies on the convex hull property and the subdivision property 

of the curve (the de Casteljau algorithm). First, we transform the B-spline curve to the Bezier 

curve, because the Bezier curve has local convex hull property, and the convex hull is tighter 

than that of B-spline, which are better for subsequent computation. Figure 4.6 shows the 

convex hull of a single Bezier curve, and the convex hulls after subdividing into two and four 

pieces. 

Figure 4.6. Convex hull and subdivision 

The clipping algorithm proceeds by comparing the convex polygonal window and the convex 

hull of each 4-control-point (for cubic case) Bezier curve segment. If they do not overlap, the 

curve lies outside the window, and should be clipped away. If they do overlap, the curve is 

subdivided and the two halves of the curve are checked for overlap against the convex 

polygonal window. As this procedure continues, each curve segment whose convex hull 

lying inside the window is kept as visible. Once a curve has been subdivided enough that it 
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can be approximated by a line segment to within a tolerance g, the intersection of the curve 

and the clipping window is also found by tracing the overlapping. 

The clipping algorithm is briefly described in Algorithm C/zp as follows. The original B-

spline curve is first transformed to 4-control-point Bezier curve segments c,, ..., and c,. 

Then, the is applied to each of the Bezier curve segments. 

Algorithm (c) (c is a 4-control-point Bezier curve segment) 

Begin 

While i < M do 

Compute the convex hull C of the Bezier curve c; 

Over/op ckfenMz/zafzoM between C and the clipping window; 

If not overlap then 

Clipped away the curve; 

Else If C is contained in the window totally 

Keep the curve visible; 

Else 

While the tolerance between the approximated line and the curve > g do 

Subdivide the c into c, and c% ; 

C&p(c,); 

C&p(cz); 

End; 
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Compute the intersection point between the curve and the window; 

End If; 

End; 

End; 

To do the over/op deferMZMafzo/z, we adapted a simple linear algorithm developed by 

Toussaint (1985). Let f and g be two convex polygons, whose intersection is a convex 

polygon. The Toussaint's algorithm for finding this convex intersection polygon can be 

described by three steps: 

1. Construct the convex hull of the union of P and g using the ro&zfmg azZzpers method; 

2. Identify the segments of P and 0 which intersect. By a special-purpose triangulation 

procedure for sail polygons (a polygon composed of two concave chains sharing a 

common vertex at one extremity, and connected by a segment (the rnasf) at the other 

end), The step can be implemented in linear time. where & and Z are the 

number of vertices of P and g which are inside the sail polygon. 

3. Merge together the polygonal chains between the intersection points found in step 2. 

In our over&zp defermznafzon, step 3 is not needed. In fact, the over/ap defgrmzTKzfzon stops as 

soon as one intersecting segment on any one of the two polygons is identified. 

All of this assumes that the Bezier convex hull and the clipping window do intersect. 

However, there are two situations in which no intersection exist: 
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1. The Bezier convex hull and the clipping window simply do not intersect each other 

and are separable (described as "not overlap" in algorithm CZzp); 

2. The Bezier convex hull is contained in the clipping window. 

For case 1, this is detected if the Toussaint's algorithm, during triangulation in step 2, makes 

a complete loop around one of the polygons. Case 2 is even easier to detect, in such a case 

no new convex hull will be found in step 1. 

In the C/fppmg algorithm, x-y bounding boxes can be used to substitute the convex hull to 

greatly simply the convex hull computation and overlap determination. The x-y bounding 

box can be obtained from the control net of the curve. The four minimum and maximum x-

and y-coordinates in the control net are used to construct the bounding box. 

Figure 4.7. Curve clipping against convex polygonal window. 
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The algorithm is applied to all wavelet curves to obtain the tool paths between the object 

contour and its loose convex hull. Figure 4.7 shows the clipping for telephone shaped object. 

Figure 4.7(a) shows the wavelet curves before clipping, (b) shows the curves after clipping. 

In fact, if we can determine how many wavelet curves are needed to do the clipping, the 

computation to construct the wavelet curve can be saved to a great degree. To determine the 

maximum number, denoted by n,, of wavelet curves needed, we can find the circumscribed 

circle of the loose convex hull. Note that we refer the circumscribed circle here to the circle 

which includes the loose convex hull inside with the minimum radius, instead of the 

circumscribed circle in exact mathematic meaning because there is no such circle for any 

polygon. 

In order to guarantee that all regions between the object contour and the loose convex hull 

are covered by wavelet curves, the /%,, can be computed by: 

= k / r - l l  ( 4 . 1 )  

Where is the radius of the circumscribed circle, r is the offset distance, [ "| represents 

taking the integer larger than the result inside. The equation gives a conservative computation 

for any object shape, and works well for our experiments introduced later. 

4 J Tool Path Simulation 
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The algorithm for tool path generation is implemented using Matlab on a UNIX workstation. 

Examples are presented to illustrate the tool path generation based on loose convex hull 

offsets and B-spline wavelets. Figure 4.8(a) shows the convex hull offsets as rough tool paths 

in a given rectangular region for the phone shaped object. Straight lines and circular arcs are 

used, and unnecessary detail features are avoided to improve machining efficiency. In Figure 

4.8(b) the wavelet curves are added. Figure 4.9 shows the rough tool paths using convex hull 

offsets (Figure 4.9(a)) and fine tool paths using wavelet curves (Figure 4.9(b)) for an '%p" in 

Chinese shaped object. 

The flower shaped object is also shown to illustrate the convex hull and wavelet based tool 

path. Figures 4.10 shows the tool path. In (a), convex hull offsets are generated. In (b), 

wavelet curves are added. 

(a) (b) 

Figure 4.8. Tool paths for telephone shaped object. 
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Figure 4.9. Tool paths for "up" in Chinese. 

(a) (b) 

Figure 4.10. Tool paths for flower shaped object. 
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Instead of offsetting the loose convex hull, morphing techniques can be used to construct the 

tool path curves between the initial loose convex hull and the outer rectangular border by 

smoothly blending between the loose convex hull and the rectangular border. 

4.4 Discussion 

Wavelet theory combined with the convex hull approach is a promising technique for tool 

path generation for NC machining. The cutting efficiency can be increased using coarse and 

fine tool path curves. In finish cutting, detail curves at different levels are used as tool paths 

for high accuracy. In rough cutting, however, straight lines and circular arcs are used. Thus, 

machining time reduction can be obtained because of the simpler tool path geometry at the 

coarse level. 

The wavelet and convex hull based technique is compared with the traditional contour 

parallel offset technique and wavelet based technique, respectively, for the phone shaped 

object. In the comparison, the machining areas are assumed equal and the machining time is 

compared using the ProCAM TekSoft-2D machining simulation software. The data for the 

traditional contour parallel offset technique and the wavelet-based technique are taken from 

Table 3.1 in Chapter 3. 
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(a) (b) (c) 

Figure 4.11. Machining simulation comparison between contour parallel (a), wavelet based 

method (b), and wavelet and convex hull based method (c). 

In Figure 4.11 (a), the tool path generated by contour parallel method is shown. It can be 

observed that the same level of detail is maintained at any distance from the object boundary. 

In Figure 4.11(b) the wavelet based tool path is shown. Figure 4.11(c) shows the tool path 

generated by the wavelet and convex hull based method. Here, the tool path curves get 

coarser farther from the object contour as in wavelet based method. But, outside the loose 

convex hull, the convex hull offsets are used as tool paths. This results in improved 

machining efficiency in three ways. First, the tool path length is reduced compared to other 

methods. Second, the fine tool path curves are less complex and the number of 

discontinuities in fine tool path is reduced compared to the contour parallel method. Third, 
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the straight lines and circular arcs are very convenient and fast for high speed machining in 

the CNC machine. 

As shown in Table 4.1, the tool path length is reduced from 914.38in in the contour parallel 

method to 835.47in in the wavelet-based method. The length is further reduced to 792.53 in 

the wavelet and convex hull based method. This results in a reduction in tool path length of 

13% compared to the contour parallel method and 5% compared to the wavelet based 

method, respectively. The machining time in the wavelet and convex hull based method is 

reduced to 60.74 min. This results in a 21% reduction in machining time as compared to 

77.52 min in the contour parallel method, and a 15% reduction as compared to 71.87min in 

the wavelet based method. 

Table 4.1. Comparison for telephone shaped object 

Contour parallel method Wavelet based method Wavelet and convex hull 

based method 

Tool path 

length (in.) 

Machining 

time (min) 

Tool path 

length (in.) 

Machining 

time (min) 

Tool path 

length (in.) 

Machining 

time (min) 

914.38 77.52 835.47 71.87 792.53 60.74 

In Figure 4.12, the wavelet and convex hull based tool path is further compared with the 

contour parallel and convex hull based method for the phone shaped object. As shown in 
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Table 4.2, in this case, for the phone shaped object, the tool path length 792.53in and the 

machining time 60.74min in the wavelet and convex hull based method is a reduction of 

1.9% and 3%, respectively, compared to 807.95in and 62.37min in the contour parallel and 

convex hull based method. 

(a) (b) 

Figure 4.12. Machining simulation comparison for telephone shaped object between contour 

parallel and convex hull based method (a), and wavelet and convex hull based method (b). 

Figure 4.13 shows the comparison for the "up" in Chinese shaped object. The tool path 

length is reduced from 814.33in in the contour parallel and convex hull based method to 

797.14in in the wavelet and convex hull based method. This is a decrease of 2.1%. The 

machining time is reduced from 67.52 min to 64.87 min corresponding to a decrease of 4%. 



www.manaraa.com

76 

In Figure 4.14, we also show the comparison for the flower shaped object. The tool path 

length is reduced from 908.22in in the contour parallel and convex hull based method to 

878.05in in the wavelet and convex hull based method. This is a decrease of 3%. The 

machining time is reduced from 73.59 min to 66.32 min corresponding to a decrease of 9%. 

Table 4.2. Tool path length and machining time comparison 

Contour parallel and convex hull 

based method 

Wavelet and convex hull based 

method 

Tool path 

length (in.) 

Machining 

time (min) 

Tool path 

length (in.) 

Machining 

time (min) 

Telephone shaped 

object 
807.95 62.37 792.53 60.74 

"Up" in Chinese 814.33 67.52 797.14 64.87 

Flower shaped 

object 
908.22 73.59 878.05 66.32 
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(a) (b) 

Figure 4.13. Machining simulation comparison for "up" in Chinese between contour parallel 

and convex hull based method (a), and wavelet and convex hull based method (b). 

* m 
(a) (b) 

Figure 4.14. Machining simulation comparison for flower shaped object between contour 

parallel and convex hull based method (a), and wavelet and convex hull based method (b). 
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It can be observed that the saving in machining time depends on the type of object 

considered. The machining time is reduced more in the case of the flower shaped object 

compared to the telephone shaped object because smooth tool path curves are used in a larger 

percentage. The percentage reduction in tool path is related to the geometry of the object, hi 

general, the wavelet and convex hull based method offers more savings in machining time 

when the number of concave regions in the object contour is higher. 

Simple straight lines, circular arcs and smoother curves obtained in wavelet and convex hull 

based machining can also be beneficial for tool selection. Larger sized cutting tools can be 

used to machine the coarse curves, away from the object boundary, and corresponds to the 

rough cutting stage. This may not be always possible with current offset techniques, 

particularly if sharp comers in the object boundary are propagated in each offset curve. 

4.5 Summary 

B-spline wavelet based multiresolution analysis techniques and convex hull method are 

applied to generate tool paths for 2D contour machining. An integrated rough and finish cut 

strategy was developed. High-resolution offset curves are used close to the object boundary 

while low-resolution offset curves; straight lines and circular arcs are used farther away from 

the boundary. This results in simpler tool paths for rough machining. Simulations indicate 

that the new tool path generation method reduces the tool path length and machining time to 

a great degree. 
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In next chapter, we will provide the basic concept and method about applying multiresolution 

analysis and wavelet theory in five-axis NC machining. Especially, multiresolution offset 

technique and multiresolution accessibility analysis will be the focus of our research work. 
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CHAPTERS FIVE-AXIS MACHINING 

Using the second generation wavelet, a complex surface can be represented at a very high 

resolution with very small triangular facets (Lounsbery ef a/., 1997). At lower resolutions 

fewer triangles with a larger size are used. 

Wavelets and multiresolution analysis may be used to hierarchically represent the original 

surface. Each hierarchical model successively approximates the final object shape. Thus 

rough-cuts can be made with the low-resolution models and finish cuts can be made with the 

high-resolution models. Wavelets based multiresolution analysis may also be used to 

develop new surface offset method for subdivision mesh surface. Multiresolution analysis 

and wavelet theory also have potential in accessibility analysis for efficient collision 

detection and avoidance in 5-axis machining. 

For our work on wavelet-based 5 axis NC tool path generation we assume that: (i) the final 

surface of a work piece is represented by a mesh; (ii) The setups and fixtures have already 

been selected; and (iii) A stock is oriented in some pre-specified way relative to fixtures in a 

setup. Our approach consists of the following steps: 

(1). Surface Meshing 

The multiresolution representation of a mesh using subdivision wavelets has a prerequisite 

that the input mesh is a semi-regular mesh, that is, most vertices of the mesh have fixed 

valence (same as for a regular grid), and only few isolated vertices have a different valence. 
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The goal of this step is to evaluate current semi-regular mesh generation methods from CAD 

data or reverse engineered data. 

(2). Wavelet Decomposition 

Wavelet based multiresolution analysis will be used to convert the original meshed surface 

with arbitrary topology to its multiresolution representation (Figure 5.1). Figure 5.1(b) shows 

the low-resolution representation of the surface in Figure 5.1(a) by implementing a low pass 

filter A. The detail part, consisting of wavelet coefficients, is obtained by a high pass filter B. 

The decomposition process, called analysis, further splits Figure 5.1(b) into an even lower 

resolution version and corresponding wavelet coefficients (Figure 5.1(c)). The filter bank 

algorithm culminates with the coarsest level representation in Figure 5.1(d), together with 

wavelet coefficients at each level. 

A 

V V V 
(a) Wavelet (b) 

Coefficients 
Wavelet (c) 
Coefficients 

Wavelet (d) 
Coefficients 

Figure 5.1. Decomposition of a mesh 
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Among the variety of existing surface subdivision schemes, we choose Loop subdivision 

scheme in our research. The Loop scheme is a simple approximating face-split scheme for 

triangular meshes proposed by Charles Loop (1987). The Loop scheme produces surfaces 

that are -continuous everywhere except at extraordinary vertices, where they are C' -

continuous. The subdivision surface 3(M) associated with a control mesh M is defined as 

the limit of a refinement process applied to M: 

M, M'=a(M), M==a(a(M)), ... 

Where the refinement procedure proceeds by splitting each triangular face into four 

surfaces. The vertices of the refined mesh are then positioned using weighted averages of the 

vertices in the unrefined mesh. Formally, starting with the initial control mesh M = M°, 

each subdivision step carries a mesh M' into a refined mesh . The vertices K""' in 

Af*' are computed as afGned combinations of the vertices of K' inM\ 

Some of the vertices of naturally correspond to vertices of F' -these are called vertex 

points; the remaining vertices in correspond to edges of the mesh M'-these are called 

edge points. Let i/denote a vertex of F"having neighbors v^,..., as shown in Figure 5.2. 

Such a vertex is said to have valence %. Let denote the edge point of corresponding 

to the edge , and letv^ be the vertex point of associated with v'. The positions of 

v'*' and are computed according to the subdivision rules 
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Figure 5.2. The neighborhood around a vertex v' of valence n. 

r + 1 _ <x{ri)vr +vf +...+vr
n y = 

V. 
r+1 

a(n)+M 

3vr +3vf +vl
r_1 +v[+1 

2=1, ..., M 
(5.1) 

Where «(/%) = with 6z(») = | 64 . Affined combinations such as those 

in Equation 5.1 can be visualized by diagrams called masks, as shown in Figure 5.3. 
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Figure 5.3. Vertex and edge subdivision masks for Loop's subdivision surface scheme. 

(3). Surface Offset 

Obtain intermediate surfaces for machining at different levels of detail. The generation of an 

intermediate surface is a very important component since the accuracy of CNC tool paths is 

directly related to the accuracy of the intermediate surface. An issue arises when using these 

simplified surfaces for machining. They are probably intersecting with the original mesh. To 

avoid gouging in machining, surface offsetting is necessary. Moreover, to apply the 

multiresolution surfaces in machining, the surface of a higher resolution model must be 

covered with that of a lower resolution model in order to prevent overcut. 

In this part, an effective and practical offset surface generation method for multiresolution 

meshed surfaces will be developed. An offset error analysis method based on wavelets will 

be developed first, in which the multiresolution control method based on the lifting scheme 

will be used to control offset error to prevent overcut. The value of the wavelet coefficient 

indicates the difference between a data value that corresponds to the wavelet coefficient and 

the average of its neighboring data values. Lifting scheme can be used to decide the position 
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of the low-resolution data that are the neighboring points of a higher resolution point 

corresponding to the wavelet coefficient. 

(4). Multiresolution accessibility analysis 

Perform accessibility analysis hierarchically. In this stage, we use the concept of visibihty to 

determine from which directions a point in the offset surface is likely to be accessible to a 

tool located outside the convex envelop of the object. In our research, visibihty information 

is represented using visibility maps (Chen and Woo, 1992). Visibility cones, which are 

clusters of visibihty directions for points on a work-piece, can be mapped on to the unit 

sphere to create a visibihty map, as shown in Figure 5.4. In Figure 5.4(a), visibihty cone for 

the shaded region is shown; (b) shows the visibihty information for the concave region, 

formed by surfaces A, B and C, is given by the intersection of the individual visibihty 

hemispheres of its neighboring faces. 

n B ri c 

(a) (b) 

Figure 5.4. Visibihty cone and visibihty maps. 
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We will develop visibility maps calculation software for triangular meshed surface. A simple 

example is shown in Figure 5.5. In Figure 5.5(a), the region in shaded color is a concave 

region formed by four triangular planes; Figure 5.5(b) shows the visibihty map for the 

concave region. 

To determine visibility at any resolution, we propose to use visibihty information from the 

lower resolution representations. Wavelet coefficients are used in the procedure. After 

visibihty analysis, the diameter of the tool and the tool holder has to be considered to ensure 

that the tool can access a required point without any interference 

(a) (b) 

Figure 5.5. Visibihty map for subdivision meshed surface. 

(5). Tool orientation determination 

For a simple convex mesh, the normal direction of every small triangular plane in the mesh, 

intuitively, can be used to decide the tool orientation for 5-axis machining. For a complex 

surface of general topology, the task of tool orientation determination is a local search in the 
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neighborhood of the direction first suggested by visibility analysis. The search criterion is to 

find the point within each region that results in minimum cusp height. For every sample point 

in the surface, a set of valid tool orientations will be output after this stage. 

(6). Tool Selection 

Obtain an optimal set of tool sizes that are needed to machine the object based on the 

multiresolution representation. Part of tool size information at sample points will be obtained 

from (4) and (5) foo/ orzenfafzor: «fgfermifKZfzof:. The 

criteria for tool selection are to maximize material removal rate and minimize the machining 

error using optimal tools selected from a standard cutting tool library. Algorithms for 

detection and correction of local tool gouging and global tool interference will be 

investigated in this step. 

(7). Tool path generation 

Obtain optimal tool paths for fast material removal in rough cuts (low resolution) and high 

surface quality in fine cuts (high resolution). The set of all possible valid orientations of the 

tool is referred to as the configuration space. What we seek now is a tool path, which sweeps 

the entire delta-volume (material to be removed) without leaving the configuration space. 

Our approach will be to do so by interpolating between the valid orientations we have 

computed. Interpolation of position between orientations can be performed in a 

straightforward fashion using linear or spline interpolation. Interpolation of Valid tool 

orientations will be connected to form a valid continuous tool path. Tool path simulation is 

needed in this stage to avoid interference resulting from interpolation. 
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(8). Feed rate compensation 

Feed rate compensation is needed because of variable depth of cut machining resulting from 

non-constant distances between offset surfaces. The feed rate compensation will be achieved 

incorporating a mechanistic model for cutting force (Devor et al 1980). The feed rate will be 

adjusted so that a uniform cutting force is maintained. 

(9). Experimental work 

The time efficiency of wavelet based machining with other machining algorithms will be 

experimentally compared. 

In above steps, surface offset and multiresolution accessibility analysis are the key steps. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

Wavelets based multiresolution analysis technique has been successfully used for NC tool 

path planning for 2.5D machining. Combined with convex hull method, an integrated rough-

to-fine cut strategy was developed. The multiresolution method results in exact offsets close 

to the object boundary as in the contour parallel method, but approximated (coarse) curves, 

straight lines and circular arcs are used away from the object boundary. This results in 

simpler curves in rough machining, sharp comers are smoothed out thereby reducing uncut 

areas and larger tools can be selected. 

Experimental results indicate that multiresolution tool path planning improves machining 

efficiency. Tool path length is reduced. In machining simulations, a reduction in machining 

time of up to 20% was obtained. 

6.2 Scope for Future Work 

Free-form pocket machining with islands will be one of the focus of our future work. 

Multiresolution analysis and wavelet based morphing will be used to generate tool paths in 

integrated rough-to-fine pocketing with islands. Outer border contour and island contour 

curves will be decomposed to generate two lowest resolution curves. Two set of wavelet 

coefficients obtained from the decomposition are interpolated, then added back to the two 
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lowest resolution curves in each bierarchal level, two new curves are interpolated again to 

generate an intermediate curve as tool paths between outer boundary and island boundary. 

The interpolating algorithms are key in this method. Multiresolution morphing techniques 

may be used during the interpolation. 

Another direction of future work is 3D object machining. The second generation wavelet will 

be used for integrated five-axis CNC machining of 3D objects. Multiresolution subdivision 

surface offset technique is a key for 3D machining. The visibihty or accessibility information 

at any resolution can be determined by Visibihty Maps from lower resolution and wavelet 

coefficients. Wavelets coefficients will also be used to obtain an optimal set of tool sizes that are 

needed to machine the object. The multiresolution analysis based NC tool path planning is 

expected to be very efficient because of the attractive linear time complexity of wavelets. It 

can significantly improve the productivity and the accuracy of machined parts. 



www.manaraa.com

91 

REFERENCES 

Austin, S .P., Jerard, P.B. and Drysdale, R.L., 1997, Comparison of Discretization Algorithms 

for NURBS Surfaces with Application to Numerically Controlled Machining, V29, nl, pp71-

83. 

Bartels, R., Beatty, J. and Barsky, B, 1987, An Introduction to Splines for use in Computer 

Graphics and Geometric Modeling, Morgan Kaufmann Inc. 

Bedworth, D.D., Henderson, M.R., and Wolfe, P.M., 1991, Computer-Integrated Design and 

Manufacturing, Industrial Engineering and Management Science, McGraw-Hill, New York. 

Beylkin, G., CoiÊnan, R. and Rokhlin, V., 1991, Fast wavelet transforms and numerical 

algorithms I. Communications on Pure and Applied Mathematics, V44, pp.141—183. 

Bobrow, J.E., 1985, Solid modelers improve NC machine tool path generation techniques, 

Computers in Engineering, pp. 439-444. 

Chen, L.L. and Woo, T.C., 1992, "Computational geometry on the sphere with application to 

automated machining," ASME Trans. J. Mech. Des. 114, pp. 285-95. 



www.manaraa.com

92 

Choi, B.K. and Jerard. R.B., 1998, "Sculptured surface machining - theory and applications," 

ISBN 0-412-78020-8, Dordrecht, The Netherlands: Kluwer. 

Choi, B.K. and Kim, B.H., 1997 "Die-Cavity Pocketing via Cutting Simulation" Computer 

Aided Design, Vol. 29, No. 12, pp 837-846 

Choi, B.K., Lee, C.S. Hwang, J.S. and Jun, C.S., 1988, Compound Surface Modeling and 

Machining, Computer Aided Design, V20, n3, pp. 127-136. 

Chui, C.K., 1992, fo fPove/gt;, Academic Press, Inc., Boston. 

Chui, C.K. and Quak, E., 1992, fFavg/et; on a Aowmfaf mferva/, Numerical Methods in 

Application Theory, Vol. 9, pp. 53-75. 

Chuang, S. H and Kao, C. Z, 1999, One-Sided Arc Approximation of B-spline Curves for 

Interference-Free Offsetting, Computer-Aided Design, Vol. 31, No. 2. 

Chuang, S.H. and Lin W. S., 1997, Tool-Path Generation for Pockets with Freefbrm Curves 

Using Bezier Convex Hulls, Int. J. Adv. Manuf. Technol, Vol. 13,1997, pp. 109-115. 

Devor, R.E., Kline, W. A. and Zdeblick, W. J., 1980, "A Mechanistic Model of the Force 

System in End Milling with Application to Machining Airframe Structures," Proc. 8* 

NAMRC Conference, pp. 297-303. 



www.manaraa.com

93 

DeVore, R., Jawerth, B. and Lucier, B., 1992, Image compression through wavelet transform 

coding. IEEE Transactions on Information Theory, 38(2): 719-746, March 1992. 

Dragomatz, D. and Mann, S., 1997, A classified bibliography of literature on NC milling 

path generation, Computer-Aided Design, Vol. 29, No. 3, pp. 239-247. 

Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W., 1995, 

Multiresolution analysis of arbitrary meshes, SIGGRAPH, pp. 173-182. 

Elber, G. and Cohen, E., 1994, "Toolpath Generation for Freefbrm Surface Models," 

Computer Aided Design, Vol. 26, No. 6, pp. 490-496. 

Elber, G., Lee, I. and Kim, M., 1997, Co/Mpon/zg Cwrve MiefAodk, 

IEEE Computer Graphics and Applications," May-June 1997, pp.62-71. 

Finkelstein, A. and Salesin, D.H., 1994, Cwrv&y, Computer Graphics 

Proceedings, Annual Conferences, pp. 261-268. 

Greenwood, F., 1989, Introduction to Computer-Integrated Manufacturing, Harcourt Brace 

Jovanovich, FL 



www.manaraa.com

Held, M., Lukacs, G. and Andor,A., 1994, focW macAmmg o/z confow-para/Zg/ fooZ 

jpafAj gengraW 6y maz/i; q//?ro%%mzfy Computer Aided Design., Vol. 26, No. 3, pp. 

189-203. 

Jenson, C.G. and Anderson, D.C., 1992, Accurate Tool Placement and Orientation for Finish 

Surface Machining, Concurrent Engineering, Ped-Vol 59, ASME, pp. 127-145. 

Jenson, C.G. and Anderson, D.C., 1996, A review of numerically controlled methods for 

finish-sculptured-surface machining, EE Transactions, 28, pp. 30-39. 

Jenson, C. G., Mullins, S. H., Anderson, D. C., 1993, "Scallop elimination based on precise 

5-axis tool placement, orientation and step-over calculations," ASME - Adv Des Automat, 

65(2), pp. 535-44. 

Jenson, C.G., Red, W.E., Pi, J., 2002, "Tool selection for 5-axis curvature matched 

machining," Computer Aided Design, 34, pp.251-66. 

Kruth J. P. and Klewais, P., 1994, "Optimization and dynamic adaptation of the cutter 

inclination during 5-axis milling of sculptured surfaces," CIRP Ann, 43(1), pp. 443-8. 

Lee, A., Sweldens, W., Schroder, P., Cowsar, L., and Dobkin, D., 1998, Maps: 

Multiresolution adaptive parameterization of surfaces, SIGGRAPH, pp. 95-104 



www.manaraa.com

95 

Lee, Y.S. and Chang, T.C., 1995, "2-Phase approach to global tool interference avoidance in 

5-axis machining," Computer Aided Design, 27(1), pp. 715-29. 

Lee, Y.S. and Chang, T.C., 1996, "Automatic cutter selection for 5-axis sculptured surface 

machining," Int. J. Prod. Res., 34, pp. 997-8. 

Lee, Y.S., Ji, H, 1997, znferrogafzoM macAz/zz/zg afrzp eWwafzofz/ôr CWC 

&fzg TMo&f macAznzMg, Int J. Prod. Res, 35(1), pp. 225-52. 

Loop, C., 1987, Smooth Subdivision Surface Based on Triangles, Master's Theisi, 

Department of Mathematics, University of Utah. 

Lounsbery, J. M., 1995, "Multiresolution analysis for surface of arbitrary topological type," 

Ph.D. thesis, University of Washington. 

Lounsbery, J. M., DeRose, T. and Warren, J., 1997, Multiresolution Surfaces of Arbitrary 

Topological Type, ACM Transactions on Graphics, Vol. 16, No 1, January, 1997, pp. 34-73. 

Mallat, S., 1989, zAeo/ymw/Argyo/Mfzom dkcomzparzfzoTz, IEEE Trans. Pattern 

Anal. Machine Intell., VI1, pp. 674-693. 

Maekawa, T., 1996, Computation of Shortest Paths on Free-Form Parametric Surfaces, 

ASME Journal of Mechanical Design, VI18, n4, pp. 499-508. 



www.manaraa.com

96 

Marshall, S. and Griffiths, J.G., 1994, A survey of cutter path construction techniques for 

milling machines, INT. J. PROD. RES., 32(12), pp. 2861-77. 

Oliver, J.H. and Huang, Y., 1994, Non-Constant Parameter NC tool Path Generation on 

Sculptured Surfaces, International Journal of Advanced Manufacturing T echnology, Vol. 9, 

pp.281-290. 

Persson, H., 1978, JVC Mac/wmng qf Poc&efa, Computer Aided Design, 

Vol. 10, No. 3, pp. 169-174. 

Quak, E. and Weyrich, N., 1994, Decomposition and reconstruction algorithms for spline 

wavelets on a bounded interval, Applied and Computational Harmonie Analysis, Vol. 1, 

No.3, pp. 217-231. 

Rao, N., Bedi, S., Bûchai, R., 1996, "Implementation of the principal-axis method for 

machining of complex surfaces," Int. J. Adv. Manufact Technol, 11, pp. 249-57. 

Redonnet J.M., Rubio, W., Monies, F., Dessein, G., 1998, "Optimizing tool positioning for 

end-mill machining of free form surfaces on 5-axis machines for both semi finishing and 

finishing," Int. J. Adv. Manufact Technol, 16 pp. 383-91. 



www.manaraa.com

97 

S anna, R., 2000, Xasa&rmenf o/' Geowefric m Tro/gcfory /br ^Aape-

CreafiMg Mznw/âcfwrmg Qpgrafiow, Journal of Manufacturing Systems, Vol. 19, No. 1, pp. 

59-72. 

Schroder, P. and Sweldens, W., 1995, "Spherical Wavelet: Efficiently Representing 

Functions on the Sphere," SIGGRAPH '95 Proc., pp.161-72, ACM. 

Shah, J.J., Sreevalsan, P. and Matthew, A., 1991, Survey of CAD/Feature-Based Process 

Planning and NC Programming Techniques, Computer Aided Engg. Journal, V8, nl, pp. 

832-838. 

StoUnitz, E.J., DeRose, T.D. and Salesin, D.H., 1995, PPave/ety/ôr Computer GropAicg." ^4 

frz/Mgr farf 7, IEEE Computer Graphics and Applications, pp. 76-84. 

StoUnitz, E.J., DeRose, T.D. and Salesin, D.H., 1995, ff&ve/e#^)r Comp»fer GropAicy. 

frimer farf 2, IEEE Computer Graphics and Applications, pp. 75-85. 

StoUnitz, E., DeRose, T. and Salesin, D., 1996, Wavelets for Computer Graphics: Theory and 

Applications, Morgan-Kaufmann. 

Suresh, K. and Yang, D.C.H., 1994, Constant ScaUop Height Machining of Free Form 

Surfaces, ASME Journal of Engg. For Industry, VI16, pp. 253-259. 



www.manaraa.com

98 

Sweldens, W., 1995, The lifting scheme: A new philosophy in biorthogonal wavelet 

constructions, In A. F. Laine and M. Unser, editors, Wavelet Applications in Signal and 

Image Processing m, pp.68-79, Proc. SPIE 2569. 

Tiller, W. and Hanson, E.G., 1984, Offsets of Two-Dimensional Profiles, IEEE Computer 

Graphics and Applications, pp. 36-46. 

Toussaint, G. T., 1985, A simple linear algorithm for intersecting convex polygons, The 

Visual Computer, vol. 1, pp. 118-123. 

Tseng, Y-J. and Joshi, S., 1994, "Recognizing Multiple Interpretations of Interacting 

Machining Features," Computer Aided Design, 26(9), pp.667-688. 

Vickers, G.W. and Bradley, C., 1992, CwnW A/bcAming fArowgA Czrcw/ar.<4rc 

TMfg/po/afzoM, Computers in Industry, Vol.19, pp. 329-337. 

Wang, Y., Lee, S.L., and Toraichi, K., 1999, AWfiacaZe 

JZepraygMfafioM IEEE Transactions on Image Processing, Vol. 8, 

No. 11, pp. 1586-1592. 

Wood, Z., Desbrun, M., Schroder, P., and Breen, D., 2000, Semi-regular mesh extraction 

6om volumes, SIGGRAPH. 


	2003
	Multiresolution analysis as an approach for tool path planning in NC machining
	Junhua Pang
	Recommended Citation


	tmp.1409931365.pdf.gEad7

